- Main
Piezoelectric needle sensor reveals mechanical heterogeneity in human thyroid tissue lesions
Abstract
Palpable thyroid lesions are common, and although mostly benign, lethal malignant nodules do occur and may be difficult to differentiate. Here, we introduce the use of a piezoelectric system called Smart-touch fine needle (or STFN) mounted directly onto conventional biopsy needles, to evaluate abnormal tissues, through quantitative real-time measurements of variations in tissue stiffness as the needle penetrates tissue. Using well-characterized biomaterials of known stiffness and explanted animal tissue models, we first established experimental protocols for STFN measures on biological tissues, as well as optimized device design for high signal-to-noise ratio. Freshly excised patient thyroids with varying fibrotic and malignant potential revealed discrete variations in STFN based tissue stiffness/stiffness heterogeneity and correlated well with final histopathology. Our piezoelectric needle sensor reveals mechanical heterogeneity in thyroid tissue lesions and provides a foundation for the design of hand-held tools for the rapid, mechano-profiling of malignant lesions in vivo while performing fine needle aspiration (FNA).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-