Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures

Abstract

Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO_{3}/SrTiO_{3} (001) heterostructures. Using a combination of element-specific x-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation, and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO_{3}. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron overaccumulation. In turn, by controlling the doping of the LaMnO_{3}, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO_{3} films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View