- Main
Evaluating Material Design Principles for Calcium-Ion Mobility in Intercalation Cathodes.
Published Web Location
https://doi.org/10.1021/acs.chemmater.4c02927Abstract
Multivalent-ion batteries offer an alternative to Li-based technologies, with the potential for greater sustainability, improved safety, and higher energy density, primarily due to their rechargeable system featuring a passivating metal anode. Although a system based on the Ca2+/Ca couple is particularly attractive given the low electrochemical plating potential of Ca2+, the remaining challenge for a viable rechargeable Ca battery is to identify Ca cathodes with fast ion transport. In this work, a high-throughput computational pipeline is adapted to (1) discover novel Ca cathodes in a largely unexplored space of empty intercalation hosts and (2) develop material design rules for Ca-ion mobility. One candidate from the screening, W2O3(PO4)2, is confirmed to have a low Nudged Elastic Band (NEB) barrier of 168 meV within a one-dimensional (1D) ion percolation topology. This candidate is subsequently synthesized and electrochemically tested, achieving reversible Ca cycling with a capacity of 25 mA h/g. To further accelerate the screening for promising Ca intercalation electrodes, machine learning (ML) Random Forest (RF) and Extreme Gradient Boosting (XGB) classification models are created with local environment descriptors based on a large, structurally and chemically diverse dataset of minimum energy pathways, spanning over 5,000 density functional theory (DFT) site energy calculations. Accuracies of 92% are achieved, material design metrics are quantified, ML force-fields are leveraged in an accelerated iteration of the screening, and a total of 27 novel Ca cathode materials are highlighted for further investigation.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-