Skip to main content
Download PDF
- Main
Non-invasive prenatal testing of beta-hemoglobinopathies using next generation sequencing, in-silico sequence size selection, and haplotyping
Abstract
Aim
To develop a non-invasive prenatal test for beta-hemoglobinopathies based on analyzing maternal plasma by using next generation sequencing.Methods
We applied next generation sequencing (NGS) of maternal plasma to the non-invasive prenatal testing (NIPT) of autosomal recessive diseases, sickle cell disease and beta-thalassemia. Using the Illumina MiSeq, we sequenced plasma libraries obtained via a Twist Bioscience probe capture panel covering 4 Kb of chromosome 11, including the beta-globin (HBB) gene and >450 genomic single-nucleotide polymorphisms (SNPs) used to estimate the fetal fraction (FF). The FF is estimated by counting paternally transmitted allelic sequence reads present in the plasma but absent in the mother. We inferred fetal beta-globin genotypes by comparing the observed mutation (Mut) and reference (Ref) read ratios to those expected for the three possible fetal genotypes (Mut/Mut; Mut/Ref; Ref/Ref), based on the FF.Results
We bioinformatically enriched the FF by excluding reads over a specified length via in-silico size selection (ISS), favoring the shorter fetal reads, which increased fetal genotype prediction accuracy. Finally, we determined the parental HBB haplotypes, which allowed us to use the read ratios observed at linked SNPs to help predict the fetal genotype at the mutation site(s). We determined HBB haplotypes via Oxford Nanopore MinION sequencing of a 2.2 kb amplicon and aligned these sequences using Soft Genetics' NextGENe LR software.Conclusion
The combined use of ISS and HBB haplotypes enabled us to correctly predict fetal genotypes in cases where the prediction based on variant read ratios alone was incorrect.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%