- Main
Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System
Published Web Location
https://doi.org/10.3390/e23030262Abstract
In this paper, a fractional-order active disturbance rejection controller (FOADRC), combining a fractional-order proportional derivative (FOPD) controller and an extended state observer (ESO), is proposed for a permanent magnet synchronous motor (PMSM) speed servo system. The global stable region in the parameter (Kp, Kd, μ)-space corresponding to the observer bandwidth ωo can be obtained by D-decomposition method. To achieve a satisfied tracking and anti-load disturbance performance, an optimal ADRC tuning strategy is proposed. This tuning strategy is applicable to both FOADRC and integer-order active disturbance rejection controller (IOADRC). The tuning method not only meets user-specified frequency-domain indicators but also achieves a time-domain performance index. Simulation and experimental results demonstrate that the proposed FOADRC achieves better speed tracking, and more robustness to external disturbance performances than traditional IOADRC and typical Proportional-Integral- Derivative (PID) controller. For example, the JITAE for speed tracking of the designed FOADRC are less than 52.59% and 55.36% of the JITAE of IOADRC and PID controller, respectively. Besides, the JITAE for anti-load disturbance of the designed FOADRC are less than 17.11% and 52.50% of the JITAE of IOADRC and PID controller, respectively.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-