Synchronizing to the Environment: Information Theoretic Constraints on Agent Learning
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Synchronizing to the Environment: Information Theoretic Constraints on Agent Learning

Abstract

We show that the way in which the Shannon entropy of sequences produced by an information source converges to the source's entropy rate can be used to monitor how an intelligent agent builds and effectively uses a predictive model of its environment. We introduce natural measures of the environment's apparent memory and the amounts of information that must be (i) extracted from observations for an agent to synchronize to the environment and (ii) stored by an agent for optimal prediction. If structural properties are ignored, the missed regularities are converted to apparent randomness. Conversely, using representations that assume too much memory results in false predictability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View