Skip to main content
Download PDF
- Main
Tusnady's inequality revisited
Abstract
Tusnady's inequality is the key ingredient in the KMT/Hungarian coupling of the empirical distribution function with a Brownian bridge. We present an elementary proof of a result that sharpens the Tusnady inequality, modulo constants. Our method uses the beta integral representation of Binomial tails, simple Taylor expansion and some novel bounds for the ratios of normal tail probabilities.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%