Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Particle-filter-enabled real-time sensor fault detection without a model of faults

Abstract

We are experiencing an explosion in the amount of sensors measuring our activities and the world around us. These sensors are spread throughout the built environment and can help us perform state estimation and control of related systems, but they are often built and/or maintained by third parties or system users. As a result, by outsourcing system measurement to third parties, the controller must accept their measurements without being able to directly verify the sensors' correct operation. Instead, detection and rejection of measurements from faulty sensors must be done with the raw data only. Towards this goal, we present a method of detecting possibly faulty behavior of sensors. The method does not require that the control designer have any model of faulty sensor behavior. As we discuss, it turns out that the widely-used particle filter state estimation algorithm provides the ingredients necessary for a hypothesis test against all ranges of correct operating behavior, obviating the need for a fault model to compare measurements. We demonstrate the applicability of our method by showing its ability to reject faulty measurements and accuracy in state estimation of a nonlinear vehicle traffic model, without information of generated faulty measurements' characteristics. In our test, we correctly identify nearly 90% of measurements as faulty or non-faulty without having any fault model. This leads to only a 3% increase in state estimation error over a theoretical 100%-accurate fault detector.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View