- Main
Structural Ordering of Semiconducting Polymers and Small-molecules for Organic Electronics
- OHara, Kathryn Allison
- Advisor(s): Chabinyc, Michael L
Abstract
Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve.
Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel π-stacks separated by the alkyl side-chains. Only two directions of transport are possible – along the conjugated backbone and in the π-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or “bridging” polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered.
High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures comparable to quadrites were discovered in the semiconducting polymer, PSBTBT, where the angle of chain overlap could be predicted by the geometry of the backbone and alkyl side-chains. Such structures are hypothesized to improve the electronic connectivity and enable 3D transport. Now, it has been determined that another semiconducting polymer, PBDTTPD, forms cross-chain structures in thin films. PBDTTPD is a low band-gap donor-acceptor copolymer used in high efficiency OPVs. The effect of the alkyl side-chains on intercrystallite order is determined by examining three different derivatives of the PBDTTPD polymer with HRTEM. Additionally, the expansion and contraction of films during thermal annealing and slow cooling is monitored through in-situ grazing incidence wide-angle X-ray scattering (GIWAXS) measurements. Results show that minor variations in side-chain structure drive both crystallite orientation and the formation of crossed structures. Overall, these studies suggest design principles to continue to advance the field of organic electronics.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-