- Main
Planck intermediate results
- Arnaud, M;
- Ashdown, M;
- Atrio-Barandela, F;
- Aumont, J;
- Baccigalupi, C;
- Banday, AJ;
- Barreiro, RB;
- Battaner, E;
- Benabed, K;
- Benoit-Lévy, A;
- Bernard, J-P;
- Bersanelli, M;
- Bielewicz, P;
- Bobin, J;
- Bond, JR;
- Borrill, J;
- Bouchet, FR;
- Brogan, CL;
- Burigana, C;
- Cardoso, J-F;
- Catalano, A;
- Chamballu, A;
- Chiang, HC;
- Christensen, PR;
- Colombi, S;
- Colombo, LPL;
- Crill, BP;
- Curto, A;
- Cuttaia, F;
- Davies, RD;
- Davis, RJ;
- de Bernardis, P;
- de Rosa, A;
- de Zotti, G;
- Delabrouille, J;
- Désert, F-X;
- Dickinson, C;
- Diego, JM;
- Donzelli, S;
- Doré, O;
- Dupac, X;
- Enßlin, TA;
- Eriksen, HK;
- Finelli, F;
- Forni, O;
- Frailis, M;
- Fraisse, AA;
- Franceschi, E;
- Galeotta, S;
- Ganga, K;
- Giard, M;
- Giraud-Héraud, Y;
- González-Nuevo, J;
- Górski, KM;
- Gregorio, A;
- Gruppuso, A;
- Hansen, FK;
- Harrison, DL;
- Hernández-Monteagudo, C;
- Herranz, D;
- Hildebrandt, SR;
- Hobson, M;
- Holmes, WA;
- Huffenberger, KM;
- Jaffe, AH;
- Jaffe, TR;
- Keihänen, E;
- Keskitalo, R;
- Kisner, TS;
- Kneissl, R;
- Knoche, J;
- Kunz, M;
- Kurki-Suonio, H;
- Lähteenmäki, A;
- Lamarre, J-M;
- Lasenby, A;
- Lawrence, CR;
- Leonardi, R;
- Liguori, M;
- Lilje, PB;
- Linden-Vørnle, M;
- López-Caniego, M;
- Lubin, PM;
- Maino, D;
- Maris, M;
- Marshall, DJ;
- Martin, PG;
- Martínez-González, E;
- Masi, S;
- Matarrese, S;
- Mazzotta, P;
- Melchiorri, A;
- Mendes, L;
- Mennella, A;
- Migliaccio, M;
- Miville-Deschênes, M-A;
- Moneti, A;
- Montier, L;
- Morgante, G;
- Mortlock, D;
- Munshi, D;
- Murphy, JA;
- Naselsky, P;
- Nati, F;
- Noviello, F;
- Novikov, D;
- Novikov, I;
- Oppermann, N;
- Oxborrow, CA;
- Pagano, L;
- Pajot, F;
- Paladini, R;
- Pasian, F;
- Peel, M;
- Perdereau, O;
- Perrotta, F;
- Piacentini, F;
- Piat, M;
- Pietrobon, D;
- Plaszczynski, S;
- Pointecouteau, E;
- Polenta, G;
- Popa, L;
- Pratt, GW;
- Puget, J-L;
- Rachen, JP;
- Reach, WT;
- Reich, W;
- Reinecke, M;
- Remazeilles, M;
- Renault, C;
- Rho, J;
- Ricciardi, S;
- Riller, T;
- Ristorcelli, I;
- Rocha, G;
- Rosset, C;
- Roudier, G;
- Rusholme, B;
- Sandri, M;
- Savini, G;
- Scott, D;
- Stolyarov, V;
- Sutton, D;
- Suur-Uski, A-S;
- Sygnet, J-F;
- Tauber, JA;
- Terenzi, L;
- Toffolatti, L;
- Tomasi, M;
- Tristram, M;
- Tucci, M;
- Umana, G;
- Valenziano, L;
- Valiviita, J;
- Van Tent, B;
- Vielva, P;
- Villa, F;
- Wade, LA;
- Yvon, D;
- Zacchei, A;
- Zonca, A
- et al.
Published Web Location
https://doi.org/10.1051/0004-6361/201425022Abstract
The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, Sν ∝ ν-α, with the spectral index, α, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-