Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Flat entanglement spectra in fixed-area states of quantum gravity

Abstract

We use the Einstein-Hilbert gravitational path integral to investigate gravita- tional entanglement at leading order O(1/G). We argue that semiclassical states prepared by a Euclidean path integral have the property that projecting them onto a subspace in which the Ryu-Takayanagi or Hubeny-Rangamani-Takayanagi surface has definite area gives a state with a flat entanglement spectrum at this order in gravitational perturbation theory. This means that the reduced density matrix can be approximated as proportional to the identity to the extent that its Renyi entropies Sn are independent of n at this order. The n-dependence of Sn in more general states then arises from sums over the RT/HRT- area, which are generally dominated by different values of this area for each n. This provides a simple picture of gravitational entanglement, bolsters the connection between holographic systems and tensor network models, clarifies the bulk interpretation of alge- braic centers which arise in the quantum error-correcting description of holography, and strengthens the connection between bulk and boundary modular Hamiltonians described by Jafferis, Lewkowycz, Maldacena, and Suh.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View