Skip to main content
Download PDF
- Main
Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes
Published Web Location
https://doi.org/10.1016/j.yjmcc.2021.08.005Abstract
Background
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes.Objective
To improve the electrophysiological maturation of hiPSC-CMs.Methods and results
On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 μmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 μM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration.Conclusion
T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%