Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

In Situ Solid-State Dewetting of Ag-Au-Pd Alloy: From Macro- to Nanoscale.

Abstract

Metal alloy nanostructures represent a promising platform for next-generation nanophotonic devices, surpassing the limitations of pure metals by offering additional buttons for tailoring their optical properties by compositional variations. While alloyed nanoparticles hold great potential, their scalability and underexplored optical behavior still limit their application. Here, we establish a systematic approach to quantifying the unique optical behavior of the AgAuPd ternary system while providing a direct comparison with its pure constituent metals. Computationally, we analyze their electronic structure and uncover the transition of Pd d states to Pd/Ag hybridized s states in the bulk form, explaining the similar optical properties observed between Pd and AgAuPd. Experimentally, we fabricate pure metal and fully alloyed nanoparticles through solid-state dewetting, a scalable method. During the process, we trace the optical transition in the systems from the initial thin film stage to the final nanoparticle stage with in situ ellipsometry. We reveal the interplay between optical properties influenced by chemical interdiffusion and localized surface plasmon resonance arising from morphological changes with ex situ surface characterizations. Additionally, we analytically implement a metallic layer derived from the ternary system in a trilayer device, resulting in a single-time and irreversible color filter, to demonstrate an application encompassing a lithography-free and cost-effective route for nanophotonic devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View