Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Responsiveness to Vedolizumab Therapy in Ulcerative Colitis is Associated With Alterations in Immune Cell-Cell Communications

Abstract

Background

Ulcerative colitis (UC) and Crohn's disease are 2 types of inflammatory bowel disease (IBD), a group of chronic digestive disorders caused by aberrant immune responses to intestinal microbes. Although changes in the composition of immune cell subsets in the context of IBD have been previously described, the interactions and communication among cells are less well understood. Moreover, the precise mechanisms of action underlying many biologic therapies, including the anti-α4β7 integrin antagonist vedolizumab, remain incompletely understood. Our study aimed to explore possible additional mechanisms through which vedolizumab acts.

Methods

We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) on peripheral blood and colon immune cells derived from patients with ulcerative colitis treated with the anti-α4β7 integrin antagonist vedolizumab. We applied a previously published computational approach, NicheNet, to predict immune cell-cell interactions, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications (CCC).

Results

We observed decreased proportions of T helper 17 (TH17) cells in UC patients who responded to vedolizumab and therefore focused the study on identifying cell-cell communications and signals of TH17 cells with other immune cells. For example, we observed that colon TH17 cells from vedolizumab nonresponders were predicted to have a greater degree of interactions with classical monocytes compared with responders, whereas colon TH17 cells from vedolizumab responders exhibited more interactions with myeloid dendritic cells compared with nonresponders.

Conclusions

Overall, our results indicate that efforts to elucidate cell-cell communications among immune and nonimmune cell types may increase the mechanistic understanding of current and investigational therapies for IBD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View