Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

Abstract

Background

Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 ((18)F).

Methods

The key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes.

Results

The combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 μL or greater. When considering volumes of 20 μL or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average.

Conclusions

The integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [(18)F]fluoride directly produced from a cyclotron (~0.1-1 mCi μL(-1)) to the low values typical of batches of [(18)F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 μCi μL(-1)).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View