- Main
Autonomous wearable sweat rate monitoring based on digitized microbubble detection.
Published Web Location
https://doi.org/10.1039/d2lc00670gAbstract
Advancements in wearable bioanalytical microsystems have enabled diurnal and (semi)continuous monitoring of physiologically-relevant indices that are accessible through probing sweat. To deliver an undistorted and physiologically-meaningful interpretation of these readings, tracking the sweat secretion rate is essential, because it allows for calibrating the biomarker readings against variations in sweat secretion and inferring the bodys hydration/electrolyte homeostasis status. To realize an autonomous wearable solution with intrinsically high signal-to-noise ratio sweat rate sensing capabilities, here, we devise a digitized microbubble detection mechanism-delivered by a hybrid microfluidic/electronic system with a compact footprint. This mechanism is based on the intermittent generation of microliter-scale bubbles via electrolysis and the instantaneous measurement of their time-of-flight (and thus, velocity) via impedimetric sensing. In this way, we overcome the limitations of previously proposed sweat rate sensing modalities that are inherently susceptible to non-targeted secretion characteristics (pH, conductivity, and temperature), constrained by volume, or lack system integration for autonomous on-body operation. By deploying our solution in human subject trials, we validate the utility of our solution for seamless monitoring of exercise- and iontophoretically-induced sweat secretion profiles.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-