- Main
Nanoscale Catalyst Chemotaxis Can Drive the Assembly of Functional Pathways
Published Web Location
https://doi.org/10.1021/acs.jpcb.1c04498Abstract
Recent experiments demonstrate molecular chemotaxis or altered diffusion rates of enzymes in the presence of their own substrates. We show here an important implication, namely, that if a nanoscale catalyst A produces a small-molecule ligand product L which is the substrate of another catalyst B, the two catalysts will attract each other. We explore this nonequilibrium producer recruitment force (ProRec) in a reaction-diffusion model. The predicted cat-cat association will be the strongest when A is a fast producer of L and B is a tight binder to it. ProRec is a force that could drive a mechanism (the catpath mechanism) by which catalysts could become spatially localized into functional pathways, such as in the biochemical networks in cells, which can achieve complex goals.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-