- Main
Functionalization of Resonant Interactions in Coupled Quantum Dots
- Czarnocki, Cyprian Julian
- Advisor(s): Scheibner, Michael
Abstract
The focus of this dissertation is discovering and finding functional uses of resonant interactions that occur in coupled quantum dots (i.e. quantum dot molecules, QDMs). Coupled quantum dots compared to individual quantum dots offer a more versatile platform to study interactions between photons, charges, and phonons. Applying an electric field in a QDM system allows tuning of the electronic energy states and controls particle tunneling between quantum dots, thus coupling the quantum dots. For the past two decades, extensive research into coupled quantum dot systems has led to a deeper understanding and control of the charge, spin and photonic properties of single quantum states. This dissertation continues the pursuit to further understand these QDM systems with a particular emphasis on exploring the physics of resonant interactions between electronic states, phononic states, and optical transitions. This work consists of three components, the first is a novel experimental method that is capable of achieving high resolution spectra. The second addresses the resonant interaction between discrete neutral exciton and optical phonons that generates a molecular polaron, which can be tuned to render QDM emissions transparent or amplify weak transitions. The final component addresses ultrafast optical charging into specific charge states of a QDM.
In the first research chapter we report on an optical spectroscopy method which is capable of resolving spectral features beyond that of the spin fine structure and homogeneous linewidth of single quantum dots using a standard, easy to use spectrometer setup. This method incorporates both laser and photoluminescence spectroscopy, combining the advantage of laser linewidth limited resolution with multi-channel photoluminescence detection. Using this method allows the ability of greatly improving the resolution beyond that of a common single stage spectrometer. The method uses phonons to assist in the measurement of the photoluminescence of a single quantum dot after resonant excitation of its ground state transition. The phonons allow us to separate and filter out the elastically scattered excitation laser light. An advantageous feature of this method is that it is easily incorporated into standard spectroscopy set-ups, being accessible to a number of researchers.
In the second research chapter we report on the coherent interaction between photons and phonons mediated by quantum dot molecular excitons. Fano resonances occur between an indirect discrete state and the optical phonon band's continuum of states. This quantum interference is highly tunable with excitation energy and laser power and allows for the phonons to behave in a coherent and non-dissipative manner. This feature has led to rendering QDM optical transitions transparent and can alternately be used to amplify weak coupling channels. This finding, using phonons in a coherent manner, can lead to new technologies in the emerging field of phononics.
In the third research chapter we report on optical charging of quantum dot molecules. The excited state spectra of the neutral and singly charged excitons in QDMs are being studied via photoluminescence excitation spectroscopy (PLE). We find an anti-correlated behavior of the resonances in the PLE spectra of different charge states, allowing for selective optical charging of the QDMs. The PLE spectra are analyzed across the regions of resonances between the indirect exciton and excited direct transitions of the low energy dot of the dot pair. The charging process seen in the excited state spectra of the trion and neutral exciton is explained by the competition between various transition rates at the resonance between the two charge states. These distinct resonances are examples of optical charging and de-charging process within the QDM. We present the experimental results and mathematical model describing this charging process.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-