Skip to main content
Download PDF
- Main
Electronic health record machine learning model predicts trauma inpatient mortality in real time: A validation study
Published Web Location
https://doi.org/10.1097/ta.0000000000003431Abstract
Introduction
Patient outcome prediction models are underused in clinical practice because of lack of integration with real-time patient data. The electronic health record (EHR) has the ability to use machine learning (ML) to develop predictive models. While an EHR ML model has been developed to predict clinical deterioration, it has yet to be validated for use in trauma. We hypothesized that the Epic Deterioration Index (EDI) would predict mortality and unplanned intensive care unit (ICU) admission in trauma patients.Methods
A retrospective analysis of a trauma registry was used to identify patients admitted to a level 1 trauma center for >24 hours from October 2019 to July 2020. We evaluated the performance of the EDI, which is constructed from 125 objective patient measures within the EHR, in predicting mortality and unplanned ICU admissions. We performed a 5 to 1 match on age because it is a major component of EDI, then examined the area under the receiver operating characteristic curve (AUROC), and benchmarked it against Injury Severity Score (ISS) and new injury severity score (NISS).Results
The study cohort consisted of 1,325 patients admitted with a mean age of 52.5 years and 91% following blunt injury. The in-hospital mortality rate was 2%, and unplanned ICU admission rate was 2.6%. In predicting mortality, the maximum EDI within 24 hours of admission had an AUROC of 0.98 compared with 0.89 of ISS and 0.91 of NISS. For unplanned ICU admission, the EDI slope within 24 hours of ICU admission had a modest performance with an AUROC of 0.66.Conclusion
Epic Deterioration Index appears to perform strongly in predicting in-patient mortality similarly to ISS and NISS. In addition, it can be used to predict unplanned ICU admissions. This study helps validate the use of this real-time EHR ML-based tool, suggesting that EDI should be incorporated into the daily care of trauma patients.Level of evidence
Prognostic, level III.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%