Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A stress-responsive p38 signaling axis in choanoflagellates.

Abstract

Animal kinases regulate cellular responses to environmental stimuli, including cell differentiation, migration, survival, and response to stress, but the ancestry of these functions is poorly understood. Choanoflagellates, the closest living relatives of animals, encode homologs of diverse animal kinases and have emerged as model organisms for reconstructing animal origins. However, efforts to identify key kinase regulators in choanoflagellates have been constrained by the limitations of currently available genetic tools. Here, we report on a framework that combines small molecule-driven kinase discovery with targeted genetics to reveal kinase function in choanoflagellates. To study the physiological roles of choanoflagellate kinases, we established two high-throughput platforms to screen the model choanoflagellate Salpingoeca rosetta with a curated library of human kinase inhibitors. We identified 95 diverse kinase inhibitors that disrupt S. rosetta cell proliferation. By focusing on one inhibitor, sorafenib, we identified a p38 kinase as a regulator of the heat shock response in S. rosetta. This finding reveals a conserved p38 function between choanoflagellates, animals, and fungi. Moreover, this study demonstrates that existing kinase inhibitors can serve as powerful tools to examine the ancestral roles of kinases that regulate modern animal development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View