Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Understanding methanol dissociative adsorption and oxidation on amorphous oxide films

Abstract

Interactions between a transition metal (oxide) catalyst and a support can tailor the number and nature of active sites, for instance in the methanol oxidation reaction. We here use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify and compare the surface adsorbates that form on amorphous metal oxide films that maximize such interactions. Considering Al(1-x)MxOy (M = Fe or Mn) films at a range of methanol : oxygen gas ratios and temperatures, we find that the redox-active transition metal site (characterized by methoxy formation) dominates dissociative methanol adsorption, while basic oxygen sites (characterized by carbonate formation) play a lesser role. Product detection, however, indicates complete oxidation to carbon dioxide and water with partial oxidation products (dimethyl ether) comprising a minor species. Comparing the intensity of methoxy and hydroxyl features at a fixed XPS chemical shift suggests methanol deprotonation during adsorption in oxygen rich conditions for high transition metal content. However, increasing methanol partial pressure and lower metal site density may promote oxygen vacancy formation and the dehydroxylation pathway, supported by a nominal reduction in the oxidation state of iron sites. These findings illustrate that AP-XPS and mass spectrometry together are powerful tools in understanding metal-support interactions, quantifying and probing the nature of catalytic active sites, and considering the link between electronic structure of materials and their catalytic activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View