- Main
High Spin Cobalt Complexes Supported by a Trigonal Tris(Phosphinimide) Ligand
Abstract
Terminal, π-basic moieties occupy a prominent position in the stabilization of unusual or reactive inorganic species. The electron-releasing, π-basic properties of phosphinimides (PN) have been employed to stabilize electron-deficient early transition metals and lanthanides. In principle, a ligand field comprised of terminal PN groups should enable access to high-valent states of late first row transition metals. Herein, we report a new class of multidentate phosphinimide ligands to logically explore this hypothesis. Access to such ligands is made possible by a new procedure for the electrophilic amination of rigid, sterically encumbering, multidentate phosphines. Such frameworks facilitate terminal PN coordination to cobalt as demonstrated by the synthesis of a trinuclear CoII3 complex and a homoleptic, three-coordinate CoIII complex. Interestingly, the CoIII complex exhibits an exceedingly rare S = 2 ground state. Combined XRD, magnetic susceptibility, and DFT studies highlight that terminally bound PNs engage in strong dπ-pπ interactions that present a weak ligand field appropriate to stabilize high-spin states of late transition metals.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-