Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films

Published Web Location

https://doi.org/10.1063/5.0069549
Abstract

Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. In this work, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View