- Main
A Ventilated Three-Dimensional Artificial Lung System for Human Inhalation Exposure Studies
Published Web Location
https://doi.org/10.1021/acs.est.4c08315Abstract
Traditional in vitro and in vivo models for inhalation toxicology studies often fail to replicate the anatomical and physiological conditions of the human lung. This limitation hinders our understanding of intrapulmonary exposures and their related health effects. To address this gap, we developed a ventilated artificial lung system that replicates human inhalation exposures in four key aspects: (1) facilitating continuous breathing with adjustable respiratory parameters; (2) distributing inhaled aerosols through transitional airflow fields in 3D-printed airway structures, which enables size-dependent particle deposition; (3) duplicating the warm and humid lung environment to promote inhaled aerosol dynamics, such as hygroscopic growth; and (4) supporting the cultivation of human airway epithelium for aerosol exposure and toxicological analyses. As a proof-of-concept application, we exposed human bronchial epithelial cells to electronic cigarette aerosols in the system. Our results show that electronic cigarette particles undergo significant hygroscopic growth within the artificial lung, leading to a 19% greater deposition dose compared to data collected at room temperature and relative humidity. Additionally, short-term exposure altered epithelial production of the chemokine Fractalkine in a nicotine-dependent manner, but no acute toxic effects were observed. This artificial lung system provides a more physiologically relevant in vitro model for studying inhalation exposures.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-