- Main
Parametric UMAP Embeddings for Representation and Semisupervised Learning
Published Web Location
https://doi.org/10.1162/neco_a_01434Abstract
UMAP is a nonparametric graph-based dimensionality reduction algorithm using applied Riemannian geometry and algebraic topology to find low-dimensional embeddings of structured data. The UMAP algorithm consists of two steps: (1) computing a graphical representation of a data set (fuzzy simplicial complex) and (2) through stochastic gradient descent, optimizing a low-dimensional embedding of the graph. Here, we extend the second step of UMAP to a parametric optimization over neural network weights, learning a parametric relationship between data and embedding. We first demonstrate that parametric UMAP performs comparably to its nonparametric counterpart while conferring the benefit of a learned parametric mapping (e.g., fast online embeddings for new data). We then explore UMAP as a regularization, constraining the latent distribution of autoencoders, parametrically varying global structure preservation, and improving classifier accuracy for semisupervised learning by capturing structure in unlabeled data.1.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-