Spatiotemporal Clusters of ERK Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells.
Published Web Location
https://www.biorxiv.org/content/10.1101/2024.02.03.578773v2.full.pdfAbstract
Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD). Type 1 pro-inflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated pHBE cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were co-treated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that pro-inflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and COPD.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.