Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Predicting admission for fall-related injuries in older adults using artificial intelligence: A proof-of-concept study.

Published Web Location

https://doi.org/10.1111/ggi.15066
Abstract

AIM: Pre-injury frailty has been investigated as a tool to predict outcomes of older trauma patients. Using artificial intelligence principles of machine learning, we aimed to identify a signature (combination of clinical variables) that could predict which older adults are at risk of fall-related hospital admission. We hypothesized that frailty, measured using the 5-item modified Frailty Index, could be utilized in combination with other factors as a predictor of admission for fall-related injuries. METHODS: The National Readmission Database was mined to identify factors associated with admission of older adults for fall-related injuries. Older adults admitted for trauma-related injuries from 2010 to 2014 were included. Age, sex, number of chronic conditions and past fall-related admission, comorbidities, 5-item modified Frailty Index, and medical insurance status were included in the analysis. Two machine learning models were selected among six tested models (logistic regression and random forest). Using a decision tree as a surrogate model for random forest, we extracted high-risk combinations of factors associated with admission for fall-related injury. RESULTS: Our approach yielded 18 models. Being a woman was one of the factors most often associated with admission for fall-related injuries. Frailty appeared in four of the 18 combinations. Being a woman, aged 65-74 years and presenting a 5-item modified Frailty Index score >3 predicted admission for fall-related injuries in 80.3% of this population. CONCLUSION: Using artificial intelligence principles of machine learning, we were able to develop 18 signatures allowing us to identify older adults at risk of admission for fall-related injuries. Future studies using other databases, such as TQIP, are warranted to validate our high-risk combination models. Geriatr Gerontol Int 2025; 25: 232-242.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View