Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Isoelectronic perturbations to f-d-electron hybridization and the enhancement of hidden order in URu2Si2

Abstract

Electrical resistivity measurements were performed on single crystals of URu2-x Os x Si2 up to x = 0.28 under hydrostatic pressure up to P = 2 GPa. As the Os concentration, x, is increased, 1) the lattice expands, creating an effective negative chemical pressure Pch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressure Pc is required to induce the HO→LMAFM phase transition. We compare the behavior of the T(x, P) phase boundary reported here for the URu2-x Os x Si2 system with previous reports of enhanced HO in URu2Si2 upon tuning with P or similarly in URu2-x Fe x Si2 upon tuning with positive Pch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2 We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metal d-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2 Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and the d-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View