Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

β3-Adrenergic receptor agonist treats rotator cuff fatty infiltration by activating beige fat in mice.

Abstract

Background

Rotator cuff (RC) muscle atrophy and fatty infiltration (FI) are independent factors correlated with failure of attempted tendon repair in larger RC tears. However, there is no effective treatment for RC muscle atrophy and FI at this time. The recent discovery of beige adipose tissue (BAT) in adults shed light on a new avenue in treating obesity and excessive fat deposition by promoting BAT activity. The goal of this study was to define the role of intramuscular BAT in RC muscle FI and the effect of β3-adrenergic receptor agonists in treating RC muscle FI by promoting BAT activity.

Materials and methods

Three-month-old wild-type C57BL/6J, platelet derived growth factor receptor-alpha (PDGFRα) green fluorescent protein (GFP) reporter and uncoupling protein 1 (UCP-1) knockout mice underwent a unilateral RC injury procedure, which included supraspinatus (SS) and infraspinatus tendon resection and suprascapular nerve transection. To stimulate BAT activity, amibegron, a selective β3-adrenergic receptor agonist, was administered to C57BL/6J mice either on the same day as surgery or 6 weeks after surgery through daily intraperitoneal injections. Gait analysis was conducted to measure forelimb function at 6 weeks or 12 weeks (in groups receiving delayed amibegron treatment) after surgery. Animals were killed humanely at 6 weeks (or 12 weeks for delayed amibegron groups) after surgery. SS muscles were harvested and analyzed histologically and biochemically.

Results

Histologic analysis of SS muscles from PDGFRα-GFP reporter mice showed that PDGFRα-positive fibroadipogenic progenitors in RC muscle expressed UCP-1, a hallmark of BAT during the development of FI after RC tears. Impairing BAT activity by knocking out UCP-1 resulted in more severe muscle atrophy and FI with inferior forelimb function in UCP-1 knockout mice compared with wild-type mice. Promoting BAT activity with amibegron significantly reduced muscle atrophy and FI after RC tears and improved forelimb function. Delayed treatment with amibegron reversed muscle atrophy and FI in muscle.

Conclusions

Fat accumulated in muscle after RC tears possesses BAT characteristics. Impairing BAT activity results in worse RC muscle atrophy and FI. Amibegron reduces and reverses RC atrophy and FI by promoting BAT activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View