- Main
Prediction of progression in idiopathic pulmonary fibrosis using CT scans atbaseline: A quantum particle swarm optimization - Random forest approach
Published Web Location
https://doi.org/10.1016/j.artmed.2019.101709Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by an unpredictable progressive declinein lung function. Natural history of IPF is unknown and the prediction of disease progression at the time ofdiagnosis is notoriously difficult. High resolution computed tomography (HRCT) has been used for the diagnosisof IPF, but not generally for monitoring purpose. The objective of this work is to develop a novel predictivemodel for the radiological progression pattern at voxel-wise level using only baseline HRCT scans. Mainly, thereare two challenges: (a) obtaining a data set of features for region of interest (ROI) on baseline HRCT scans andtheir follow-up status; and (b) simultaneously selecting important features from high-dimensional space, andoptimizing the prediction performance. We resolved the first challenge by implementing a study design andhaving an expert radiologist contour ROIs at baseline scans, depending on its progression status in follow-upvisits. For the second challenge, we integrated the feature selection with prediction by developing an algorithmusing a wrapper method that combines quantum particle swarm optimization to select a small number of featureswith random forest to classify early patterns of progression. We applied our proposed algorithm to analyzeanonymized HRCT images from 50 IPF subjects from a multi-center clinical trial. We showed that it yields aparsimonious model with 81.8% sensitivity, 82.2% specificity and an overall accuracy rate of 82.1% at the ROIlevel. These results are superior to other popular feature selections and classification methods, in that ourmethod produces higher accuracy in prediction of progression and more balanced sensitivity and specificity witha smaller number of selected features. Our work is the first approach to show that it is possible to use onlybaseline HRCT scans to predict progressive ROIs at 6 months to 1year follow-ups using artificial intelligence.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-