- Main
Rapid change of superconductivity and electron-phonon coupling through critical doping in Bi-2212
Published Web Location
https://doi.org/10.1126/science.aar3394Abstract
Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-critical temperature (T c) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. In this study, we used angle-resolved photoemission spectroscopy to find a pronounced correlation between the superconducting gap and the bosonic coupling strength near the Brillouin zone boundary in Bi2Sr2CaCu2O8+δ The bosonic coupling strength rapidly increases from the overdoped Fermi liquid regime to the optimally doped strange metal, concomitant with the quadrupled superconducting gap and the doubled gap-to-T c ratio across the pseudogap boundary. This synchronized lattice and electronic response suggests that the effects of electronic interaction and the electron-phonon coupling (EPC) reinforce each other in a positive-feedback loop upon entering the strange-metal regime, which in turn drives a stronger superconductivity.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-