Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A case of pediatric B-Lymphoblastic leukemia presenting with a t(9;12)(p24;q11.2) involving JAK2 and concomitant MLL rearrangement with apparent insertion at 6q27

Abstract

Abstract Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in pediatric patients and the leading cause of cancer-related death in children and young adults. Translocations of 9p24 involving JAK2 (9p24) and gain-of-function mutations of JAK2 with subsequent activation of the JAK2 kinase have been described in several hematological malignancies including B-ALL. However, rearrangements involving JAK2 are rare in B-ALL as only few cases have been described in the literature. Findings Herein, we present a case of pediatric B-ALL whose conventional cytogenetics revealed an abnormal karyotype with a reciprocal translocation involving 9p24 (JAK2) and 12p11.2. Fluorescence in situ hybridization (FISH) studies using the RP11-927H16 Spectrum Green JAK2 probe on previously G-banded metaphases confirmed the involvement of JAK2 in this rearrangement. Further FISH studies on the same previously G-banded metaphases using the LSI MLL probe helped to characterize an insertion of MLL into 6q27 as an additional abnormality in this karyotype. FISH studies performed on interphase nuclei also revealed an abnormal clone with MLL rearrangements in 23.6% of the nuclei examined as well as an abnormal clonal population with a deletion of the 5'IGH@ region in 88.3% of the nuclei examined. Conclusions Rearrangements of 9p24 can result in constitutive activation of JAK2, and have been observed in B-ALL. Rearrangements of the MLL gene have also been described extensively in B-ALL. However, rearrangements of MLL with a partner at 6q27 and in conjunction with a translocation involving JAK2 have not been previously described. This case pinpoints the importance of FISH and conventional cytogenetics to characterize complex rearrangements in which JAK2 and MLL are involved. The therapeutic targeting of JAK2 and MLL in cases like this may be prognostically beneficial.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View