- Main
Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films
Published Web Location
https://doi.org/10.1103/physrevb.85.024113Abstract
We present the temperature- and thickness-dependent structural and morphological evolution of strain-induced transformations in highly strained epitaxial BiFeO 3 films deposited on LaAlO 3 (001) substrates. Using high-resolution x-ray diffraction and temperature-dependent scanning-probe-based studies, we observe a complex temperature- and thickness-dependent evolution of phases in this system. A thickness-dependent transformation from a single, monoclinically distorted, tetragonal-like phase to a complex mixed-phase structure in films with thicknesses up to ∼200 nm is the consequence of a strain-induced spinodal instability in the BiFeO 3/LaAlO 3 system. Additionally, a breakdown of this strain-stabilized metastable mixed-phase structure to nonepitaxial microcrystallites of the parent rhombohedral structure of BiFeO 3 is observed to occur at a critical thickness of ∼300 nm. We further propose a mechanism for this abrupt breakdown that provides insight into the competing nature of the phases in this system. © 2012 American Physical Society.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-