Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

RAFT Polymerization of “Splitters” and “Cryptos”: Exploiting Azole‑N‑carboxamides As Blocked Isocyanates for Ambient Temperature Postpolymerization Modification

Abstract

A postpolymerization modification strategy based on ambient temperature nucleophilic chemical deblocking of polymer scaffolds bearing N-heterocycle-blocked isocyanate moieties is reported. Room temperature RAFT polymerization of three azole-N-carboxamide methacrylates, including 3,5-dimethylpyrazole, imidazole, and 1,2,4-triazole derivatives, afforded reactive polymer scaffolds with well-defined molecular weights and narrow dispersities (Ä? < 1.2). Model analogues possessing the same N-heterocycle blocking agents with varied leaving group abilities were synthesized to determine optimal deblocking conditions. The reactivity of the azole-N-carboxamide moieties toward nucleophiles can be tuned simply by varying the structure of the azole blocking agents (reactivity order: pyrazole < imidazole < triazole). DBU-catalyzed reactions of thiols with imidazole- and 1,2,4-triazole-blocked isocyanate scaffolds were shown to occur rapidly and quantitatively under ambient conditions. Differences in reactivity of 1,2,4-triazole- and 3,5-dimethylpyrazole-blocked isocyanate copolymers with various nucleophiles at room temperature facilitated sequential and postpolymerization modification. This strategy advances the utility of blocked isocyanates and promotes the chemistry as a powerful postmodification tool to access multifunctional polymeric materials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View