Skip to main content
Download PDF
- Main
Myelin water quantification in multiple sclerosis using short repetition time adiabatic inversion recovery prepared-fast spin echo (STAIR-FSE) imaging
Published Web Location
https://doi.org/10.21037/qims-23-1021Abstract
Background
Myelin water imaging (MWI) is a myelin-specific technique, which has great potential for the assessment of demyelination and remyelination. This study develops a new MWI method, which employs a short repetition time adiabatic inversion recovery (STAIR) technique in combination with a commonly used fast spin echo (FSE) sequence and provides quantification of myelin water (MW) fractions.Method
Whole-brain MWI was performed using the short repetition time adiabatic inversion recovery prepared-fast spin echo (STAIR-FSE) technique on eight healthy volunteers (mean age: 38±14 years, four-males) and seven patients with multiple sclerosis (MS) (mean age: 53.7±8.7 years, two-males) on a 3T clinical magnetic resonance imaging scanner. To facilitate the quantification of apparent myelin water fraction (aMWF), a proton density-weighted FSE was also used during the scans to allow total water imaging. The aMWF measurements of MS lesions and normal-appearing white matter (NAWM) regions in MS patients were compared with those measured in normal white matter (NWM) regions in healthy volunteers. Both the analysis of variance (ANOVA) test and paired comparison were performed for the comparison.Results
The MW in the whole-brain was selectively imaged and quantified using the STAIR-FSE technique in all participants. MS lesions showed much lower signal intensities than NAWM in the STAIR-FSE images. ANOVA analysis revealed a significant difference in the aMWF measurements between the three groups. Moreover, the aMWF measurements in MS lesions were significantly lower than those in both NWM of healthy volunteers and NAWM of MS patients. Lower aMWF measurements in NAWM were also found in comparison with those in NWM.Conclusions
The STAIR-FSE technique is capable of measuring aMWF values for the indirect detection of myelin loss in MS, thus facilitating clinical translation of whole brain MWI and quantification, which show great potential for the detection and evaluation of changes in myelin in the brain of patients with MS for future larger cohort studies.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%