Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice

Abstract

Objective

Joint injury rapidly induces expression of primary response genes (PRGs), which activate a cascade of secondary genes that destroy joint tissues and initiate post-traumatic osteoarthritis (PTOA). Bromodomain-containing-protein-4 (Brd4) and cyclin-dependent-kinase-9 (CDK9) cooperatively control the rate-limiting step of PRG transactivation, including pro-inflammatory genes. This study investigated whether Brd4 and CDK9 inhibitors suppress inflammation and prevent PTOA development in vitro and in a mouse PTOA model.

Methods

The effects of Brd4 and CDK9 inhibitors (JQ1 and Flavopiridol) on PRG and associated secondary damage were rigorously tested in different settings. Short-term effects of inflammatory stimuli (IL-1β, IL-6, TNF) on human chondrocyte PRG expression were assessed by RT-PCR and microarray after 5-h. We quantified glycosaminoglycan release from IL-1β-treated bovine cartilage explants after 3-6 days, and osteoarthritic changes in mice after ACL-rupture using RT-PCR (2-24hrs), in vivo imaging of MMP activity (24hrs), AFM-nanoindentation (3-7days), and histology (3days-4wks).

Results

Flavopiridol and JQ1 inhibitors act synergistically, and a combination of both almost completely prevented the activation of most IL-1β-induced PRGs in vitro by microarray analysis, and prevented IL-1β-induced glycosaminoglycan release from cartilage explants. Mice given the drug combination showed reduced IL-1β and IL-6 expression, less in vivo MMP activity, and lower synovitis (1.5 vs 4.9) and OARSI scores (2.8 vs 6.0) than untreated mice with ACL-rupture.

Conclusions

JQ1 and Flavopiridol work synergistically to reduce injury response after joint trauma, suggesting that targeting Brd4 and/or CDK9 could be a viable strategy for PTOA prevention and treatment of early OA.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View