Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing's sarcoma, which was blocked by Ewing himself 80 years ago.

Abstract

William B. Coley developed bacterial therapy of cancer more than 100 years ago and had clinical success. James Ewing, a very famous cancer pathologist for whom the Ewing sarcoma is named, was Coley's boss at Memorial Hospital in New York and terminated Coley's bacterial therapy of cancer. A tumor from a patient with soft-tissue Ewing's sarcoma, who failed doxorubicin (DOX) therapy, was previously implanted in nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. In the present study, the Ewing's sarcoma PDOX was treated with tumor-targeting S. typhimurium A1-R expressing green fluorescent (GFP), alone and in combination with DOX. S. typhimurium A1-R-GFP was detected in the tumors after intratumor (i.t.) or intravenous (i.v.) injection. The combination of S. typhimurium A1-R and DOX significantly reduced tumor weight (37.8 ± 15.6 mg) compared to the untreated control (73.8 ± 10.1 mg, P < 0.01). S. typhimurium A1-R monotherapy-treated tumors tended to be smaller (50.9 ± 17.8 mg, P = 0.051). DOX monotherapy did not show efficacy (66.3 ± 26.4 mg, P = 0.82), as was the case with the patient. The PDOX model faithfully replicated the DOX resistance the Ewing's sarcoma had in the patient. S. typhimurium A1-R converted the Ewing's sarcoma from DOX resistant to sensitive. One can only wonder how bacterial therapy and immunotherapy of cancer would have developed over the past 80 years if Ewing did not stop Coley.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View