Skip to main content
Download PDF
- Main
Bottom-up Skill Learning in Reactive Sequential Decision Tasks
Abstract
This paper introduces a hybrid model that unifies connectionist, symbolic, and reinforcement learning into an integrated architecture for bottom-up skill learning in reactive sequential decision tasks. The model is designed for an agent to learn continuously from on-going experience in the world, without the use of preconceived concepts and knowledge. Both procedural skills and high-level knowledge are acquired through an agent's experience interacting with the world. Computational experiments with the model in two domains are reported.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%