- Main
Nanostructured Single-Ion-Conducting Hybrid Electrolytes Based on Salty Nanoparticles and Block Copolymers
Published Web Location
https://doi.org/10.1021/acs.macromol.6b02522Abstract
We report on the synthesis and characterization of a series of microphase-separated, single-ion-conducting block copolymer electrolytes. Salty nanoparticles comprising silsesquioxane cores with covalently bound polystyrenesulfonyllithium (trifluoromethylsulfonyl)imide (PSLiTFSI) chains were synthesized by nitroxide-mediated polymerization. Hybrid electrolytes were obtained by mixing the salty nanoparticles into a microphase-separated polystyrene-b-poly(ethylene oxide) (SEO) block copolymer. Miscibility of PSLiTFSI and poly(ethylene oxide) (PEO) results in localization of the nanoparticles in the PEO-rich microphase. The morphology of hybrid electrolytes was determined by scanning transmission electron microscopy. We explore the relationship between the morphology and ionic conductivity of the hybrid. The transference number of the electrolyte with the highest ionic conductivity was measured by dc polarization to confirm the single-ion-conducting character of the electrolyte. Discharge curves obtained from lithium metal-hybrid electrolyte-FePO4 batteries are compared to the data obtained from the batteries with a conventional block copolymer electrolyte.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-