Network and Phase Symmetries Reveal That Amplitude Dynamics Stabilize Decoupled Oscillator Clusters
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Network and Phase Symmetries Reveal That Amplitude Dynamics Stabilize Decoupled Oscillator Clusters

Abstract

Oscillator networks display intricate synchronization patterns. Determining their stability typically requires incorporating the symmetries of the network coupling. Going beyond analyses that appeal only to a network's automorphism group, we explore synchronization patterns that emerge from the phase-shift invariance of the dynamical equations and symmetries in the nodes. We show that these nonstructural symmetries simplify stability calculations. We analyze a ring-network of phase-amplitude oscillators that exhibits a "decoupled" state in which physically-coupled nodes appear to act independently due to emergent cancellations in the equations of dynamical evolution. We establish that this state can be linearly stable for a ring of phase-amplitude oscillators, but not for a ring of phase-only oscillators that otherwise require explicit long-range, nonpairwise, or nonphase coupling. In short, amplitude-phase interactions are key to stable synchronization at a distance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View