- Main
An energy-driven approach to linkage unfolding
Published Web Location
https://doi.org/10.1145/997817.997840Abstract
We present a new algorithm for unfolding planar polygonal link-ages without self-intersection based on following the gradient flow of a "repulsive" energy function. This algorithm has several advantages over previous methods. (1) The output motion is represented explicitly and exactly as a piecewise-linear curve in angle space. As a consequence, an exact snapshot of the linkage at any time can be extracted from the output in strongly polynomial time (on a real RAM supporting arithmetic, radicals, and trigonometric functions). (2) Each linear step of the motion can be computed exactly in O(n2) time on a real RAM where n is the number of vertices. (3) We explicitly bound the number of linear steps (and hence the running time) as a polynomial in n and the ratio between the maximum edge length and the initial minimum distance between a vertex and an edge. (4) Our method is practical and easy to implement. We provide a publicly accessible Java applet that implements the algorithm.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-