Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
Abstract
Background
Although adverse left ventricular shape changes (remodeling) after myocardial infarction (MI) are predictive of morbidity and mortality, current clinical assessment is limited to simple mass and volume measures, or dimension ratios such as length to width ratio. We hypothesized that information maximizing component analysis (IMCA), a supervised feature extraction method, can provide more efficient and sensitive indices of overall remodeling.Methods
IMCA was compared to linear discriminant analysis (LDA), both supervised methods, to extract the most discriminatory global shape changes associated with remodeling after MI. Finite element shape models from 300 patients with myocardial infarction from the DETERMINE study (age 31-86, mean age 63, 20 % women) were compared with 1991 asymptomatic cases from the MESA study (age 44-84, mean age 62, 52 % women) available from the Cardiac Atlas Project. IMCA and LDA were each used to identify a single mode of global remodeling best discriminating the two groups. Logistic regression was employed to determine the association between the remodeling index and MI. Goodness-of-fit results were compared against a baseline logistic model comprising standard clinical indices.Results
A single IMCA mode simultaneously describing end-diastolic and end-systolic shapes achieved best results (lowest Deviance, Akaike information criterion and Bayesian information criterion, and the largest area under the receiver-operating-characteristic curve). This mode provided a continuous scale where remodeling can be quantified and visualized, showing that MI patients tend to present larger size and more spherical shape, more bulging of the apex, and thinner wall thickness.Conclusions
IMCA enables better characterization of global remodeling than LDA, and can be used to quantify progression of disease and the effect of treatment. These data and results are available from the Cardiac Atlas Project ( http://www.cardiacatlas.org ).Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%