Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A hollow TFG condensate spatially compartmentalizes the early secretory pathway.

Abstract

In the early secretory pathway, endoplasmic reticulum (ER) and Golgi membranes form a nearly spherical interface. In this ribosome-excluding zone, bidirectional transport of cargo coincides with a spatial segregation of anterograde and retrograde carriers by an unknown mechanism. We show that at physiological conditions, the Trk-fused gene (TFG) self-organizes to form a hollow, anisotropic condensate that matches the dimensions of the ER-Golgi interface and is dynamically regulated across the cell cycle. Regularly spaced hydrophobic residues in TFG control the condensation mechanism and result in a porous condensate surface. We find that TFG condensates act as a molecular sieve capable of allowing access of anterograde coats (COPII) to the condensate interior while restricting retrograde coats (COPI). We propose that a hollow TFG condensate structures the ER-Golgi interface to create a diffusion-limited space for anterograde transport. We further propose that TFG condensates optimize membrane flux by insulating secretory carriers in their lumen from retrograde carriers outside TFG cages.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View