Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage

Published Web Location

https://doi.org/10.1115/1.4041868Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

The flow field in a ribbed triangular channel representing the trailing edge internal cooling passage of a gas turbine high-pressure turbine blade is investigated via magnetic resonance velocimetry (MRV) and large eddy simulation (LES). The results are compared to a baseline channel with no ribs. LES predictions of the mean velocity fields are validated by the MRV results. In the case of the baseline triangular channel with no ribs, the mean flow and turbulence level at the sharp corner are small, which would correspond to poor heat transfer in an actual trailing edge. For the staggered ribbed channel, turbulent mixing is enhanced, and flow velocity and turbulence intensity at the sharp edge increase. This is due to secondary flow induced by the ribs moving toward the sharp edge in the center of the channel. This effect is expected to enhance internal convective heat transfer for the turbine blade trailing edge.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View