- Main
Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks.
Published Web Location
https://doi.org/10.1016/j.patcog.2018.07.022Abstract
Generalizability of algorithms for binary cancer vs. no cancer classification is unknown for clinically more significant multi-class scenarios where intermediate categories have different risk factors and treatment strategies. We present a system that classifies whole slide images (WSI) of breast biopsies into five diagnostic categories. First, a saliency detector that uses a pipeline of four fully convolutional networks, trained with samples from records of pathologists screenings, performs multi-scale localization of diagnostically relevant regions of interest in WSI. Then, a convolutional network, trained from consensus-derived reference samples, classifies image patches as non-proliferative or proliferative changes, atypical ductal hyperplasia, ductal carcinoma in situ, and invasive carcinoma. Finally, the saliency and classification maps are fused for pixel-wise labeling and slide-level categorization. Experiments using 240 WSI showed that both saliency detector and classifier networks performed better than competing algorithms, and the five-class slide-level accuracy of 55% was not statistically different from the predictions of 45 pathologists. We also present example visualizations of the learned representations for breast cancer diagnosis.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-