Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Key Role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo Handling of Uremic Toxins and Solutes

Abstract

In vitro data indicates that the kidney proximal tubule (PT) transporters of uremic toxins and solutes (e.g., indoxyl sulfate, p-cresol sulfate, kynurenine, creatinine, urate) include two "drug" transporters of the organic anion transporter (OAT) family: OAT1 (SLC22A6, originally NKT) and OAT3 (SLC22A8). Here, we have examined new and prior metabolomics data from the Oat1KO and Oat3KO, as well as newly obtained metabolomics data from a "chemical double" knockout (Oat3KO plus probenecid). This gives a picture of the in vivo roles of OAT1 and OAT3 in the regulation of the uremic solutes and supports the centrality of these "drug" transporters in independently and synergistically regulating uremic metabolism. We demonstrate a key in vivo role for OAT1 and/or OAT3 in the handling of over 35 uremic toxins and solutes, including those derived from the gut microbiome (e.g., CMPF, phenylsulfate, indole-3-acetic acid). Although it is not clear whether trimethylamine-N-oxide (TMAO) is directly transported, the Oat3KO had elevated plasma levels of TMAO, which is associated with cardiovascular morbidity in chronic kidney disease (CKD). As described in the Remote Sensing and Signaling (RSS) Hypothesis, many of these molecules are involved in interorgan and interorganismal communication, suggesting that uremia is, at least in part, a disorder of RSS.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View