Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Semiparametric estimation for the additive hazards model with left-truncated and right-censored data.

Abstract

Survival data from prevalent cases collected under a cross-sectional sampling scheme are subject to left-truncation. When fitting an additive hazards model to left-truncated data, the conditional estimating equation method (Lin & Ying, 1994), obtained by modifying the risk sets to account for left-truncation, can be very inefficient, as the marginal likelihood of the truncation times is not used in the estimation procedure. In this paper, we use a pairwise pseudolikelihood to eliminate nuisance parameters from the marginal likelihood and, by combining the marginal pairwise pseudo-score function and the conditional estimating function, propose an efficient estimator for the additive hazards model. The proposed estimator is shown to be consistent and asymptotically normally distributed with a sandwich-type covariance matrix that can be consistently estimated. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates application of the method.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View