Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Quantitative Fundus Autofluorescence in Rhesus Macaques in Aging and Age-Related Drusen

Abstract

Purpose

To employ quantitative fundus autofluorescence (qAF) imaging in rhesus macaques to noninvasively assess retinal pigment epithelial (RPE) lipofuscin in nonhuman primates (NHPs) as a model of aging and age-related macular degeneration (AMD).

Methods

The qAF imaging was performed on eyes of 26 rhesus macaques (mean age 18.8 ± 8.2 years, range 4-27 years) with normal-appearing fundus or with age-related soft drusen using a confocal scanning laser ophthalmoscope with 488 nm excitation and an internal fluorescence reference. Eyes with soft drusen also underwent spectral-domain optical coherence tomography imaging to measure drusen volume and height of individual drusen lesions. The qAF levels were measured from the perifoveal annular ring (quantitative autofluorescence 8 [qAF8]) using the Delori grid, as well as focally over individual drusen lesions in this region. The association between qAF levels and age, sex, and drusen presence and volume were determined using multivariable regression analysis.

Results

Mean qAF levels increased with age (P < 0.001) and were higher in females (P = 0.047). Eyes with soft drusen exhibited reduced mean qAF compared with age-matched normal eyes (P = 0.003), with greater drusen volume showing a trend toward decreased qAF levels. However, qAF levels are focally increased over most individual drusen (P < 0.001), with larger drusen appearing more hyperautofluorescent (R2 = 0.391, P < 0.001).

Conclusions

In rhesus macaques, qAF levels are increased with age and female sex, but decreased in eyes with soft drusen, similar to human AMD. However, drusen lesions appear hyperautofluorescent unlike those in humans, suggesting similarities and differences in RPE lipofuscin between humans and NHPs that may provide insight into drusen biogenesis and AMD pathogenesis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View