Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning A 5-Year Prospective Study

Abstract

Purpose

To investigate whether progressive retinal nerve fiber layer (RNFL) thinning is predictive of progressive visual field (VF) loss in glaucoma.

Design

Prospective study.

Participants

A total of 139 primary open-angle glaucoma patients (240 eyes) followed up for ≥5 years.

Methods

Retinal nerve fiber layer imaging and VF testing were performed at ∼4-month intervals. Progressive RNFL thinning was determined by event analysis (Guided Progression Analysis [GPA]) and trend analysis (Trend-based Progression Analysis [TPA]) of serial registered RNFL thickness maps. VF progression was detected according to the Early Manifest Glaucoma Trial (EMGT) ("likely progression") and pointwise linear regression (PLR) criteria (≥3 contiguous locations with sensitivity change <0 decibels [dB]/year at P < 0.01). Hazard ratios (HRs) for predicting VF progression were calculated by Cox proportional hazard modeling with progressive RNFL thinning as a time-dependent covariate. The specificity of GPA/TPA for detection of RNFL changes was determined by the proportion of eyes with significant RNFL thinning/thickening in 25 normal subjects followed weekly for 8 consecutive weeks and the proportion with significant RNFL thickening in the glaucoma group.

Main outcome measures

The HRs of VF progression.

Results

A total of 65 (27.1%) and 117 eyes (48.8%) had progressive RNFL thinning based on GPA and TPA, respectively, and 30 (12.5%) and 39 eyes (16.3%) had VF progression per the EMGT and PLR criteria, respectively, during follow-up. Eyes with progressive RNFL thinning had lower VF survival estimates and a faster decline of visual field index than eyes without. Progressive RNFL thinning predicted the development of VF progression with HRs of 8.44 (95% confidence interval, 3.30-21.61) (EMGT criteria) and 5.11 (2.51-10.42) (PLR criteria) for TPA and 3.95 (1.74-8.93) (EMGT criteria) and 3.81 (1.83-7.92) (PLR criteria) for GPA after controlling for baseline covariates. The specificities of GPA and TPA were 100% (83.4%-100.0%) in the normal group and 81.7% (76.2%-86.4%) and 84.2% (78.9%-88.6%), respectively, in the glaucoma group.

Conclusions

Progressive RNFL thinning determined by GPA and TPA is predictive of detectable functional decline in glaucoma. This finding underscores the significance of detecting progressive RNFL thinning and its relevance to initiate or augment treatment for glaucoma patients. Regulatory authorities may consider progressive RNFL thinning as an outcome measure in clinical trials for evaluation of glaucoma treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View