- Main
Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
- Adams, C;
- An, R;
- Anthony, J;
- Asaadi, J;
- Auger, M;
- Bagby, L;
- Balasubramanian, S;
- Baller, B;
- Barnes, C;
- Barr, G;
- Bass, M;
- Bay, F;
- Bhat, A;
- Bhattacharya, K;
- Bishai, M;
- Blake, A;
- Bolton, T;
- Camilleri, L;
- Caratelli, D;
- Fernandez, R Castillo;
- Cavanna, F;
- Cerati, G;
- Chen, H;
- Chen, Y;
- Church, E;
- Cianci, D;
- Cohen, E;
- Collin, GH;
- Conrad, JM;
- Convery, M;
- Cooper-Troendle, L;
- Crespo-Anadón, JI;
- Del Tutto, M;
- Devitt, D;
- Diaz, A;
- Dytman, S;
- Eberly, B;
- Ereditato, A;
- Sanchez, L Escudero;
- Esquivel, J;
- Evans, JJ;
- Fadeeva, AA;
- Fleming, BT;
- Foreman, W;
- Furmanski, AP;
- Garcia-Gamez, D;
- Garvey, GT;
- Genty, V;
- Goeldi, D;
- Gollapinni, S;
- Gramellini, E;
- Greenlee, H;
- Grosso, R;
- Guenette, R;
- Guzowski, P;
- Hackenburg, A;
- Hamilton, P;
- Hen, O;
- Hewes, J;
- Hill, C;
- Ho, J;
- Horton-Smith, GA;
- Hourlier, A;
- Huang, E-C;
- James, C;
- de Vries, J Jan;
- Jiang, L;
- Johnson, RA;
- Joshi, J;
- Jostlein, H;
- Jwa, Y-J;
- Kaleko, D;
- Karagiorgi, G;
- Ketchum, W;
- Kirby, B;
- Kirby, M;
- Kobilarcik, T;
- Kreslo, I;
- Li, Y;
- Lister, A;
- Littlejohn, BR;
- Lockwitz, S;
- Lorca, D;
- Louis, WC;
- Luethi, M;
- Lundberg, B;
- Luo, X;
- Marchionni, A;
- Marcocci, S;
- Mariani, C;
- Marshall, J;
- Caicedo, DA Martinez;
- Mastbaum, A;
- Meddage, V;
- Miceli, T;
- Mills, GB;
- Mogan, A;
- Moon, J;
- Mooney, M;
- Moore, CD;
- Mousseau, J;
- Murphy, M;
- Murrells, R;
- Naples, D;
- Nienaber, P;
- Nowak, J;
- Palamara, O;
- Pandey, V;
- Paolone, V;
- Papadopoulou, A;
- Papavassiliou, V;
- Pate, SF;
- Pavlovic, Z;
- Piasetzky, E;
- Porzio, D;
- Pulliam, G;
- Qian, X;
- Raaf, JL;
- Radeka, V;
- Rafique, A;
- Rochester, L;
- Ross-Lonergan, M;
- von Rohr, C Rudolf;
- Russell, B;
- Schmitz, DW;
- Schukraft, A;
- Seligman, W;
- Shaevitz, MH;
- Sinclair, J;
- Smith, A;
- Snider, EL;
- Soderberg, M;
- Söldner-Rembold, S;
- Soleti, SR;
- Spentzouris, P;
- Spitz, J;
- St. John, J;
- Strauss, T;
- Sutton, K;
- Sword-Fehlberg, S;
- Szelc, AM;
- Tagg, N;
- Tang, W;
- Terao, K;
- Thomson, M;
- Thorn, C;
- Toups, M;
- Tsai, Y-T;
- Tufanli, S;
- Usher, T;
- Van De Pontseele, W;
- Van de Water, RG;
- Viren, B;
- Weber, M;
- Wei, H;
- Wickremasinghe, DA;
- Wierman, K;
- Williams, Z;
- Wolbers, S;
- Wongjirad, T;
- Woodruff, K;
- Yang, T;
- Yarbrough, G;
- Yates, LE;
- Yu, B;
- Zeller, GP;
- Zennamo, J;
- Zhang, C
- et al.
Published Web Location
https://doi.org/10.1088/1748-0221/13/07/p07006Abstract
We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-